TinyML Models
LARUN uses a federation of specialized TinyML models, each optimized for a specific astronomical detection or analysis task. All models are under 100KB, enabling edge deployment and browser-based inference.
Model Architecture
All LARUN models share a common architecture optimized for TinyML deployment:
┌─────────────────────────────────────────────────────────────┐
│ INPUT LIGHT CURVE │
│ (normalized flux vs. time) │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ PREPROCESSING LAYER │
│ Normalization │ Detrending │ Outlier Removal │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ FEATURE EXTRACTION (1D-CNN) │
│ Conv1D(32) → ReLU → MaxPool → Conv1D(64) → ReLU │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ CLASSIFICATION HEAD │
│ Flatten → Dense(128) → Dropout → Dense(N) │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ OUTPUT │
│ Class probabilities or regression values │
└─────────────────────────────────────────────────────────────┘
Optimization Techniques
- INT8 Quantization: Reduces model size 4x with minimal accuracy loss
- Pruning: Removes redundant weights
- Knowledge Distillation: Trained from larger teacher models
- TensorFlow Lite: Optimized for edge inference
Model Federation
LARUN models work together as a federation, sharing information and combining predictions for robust analysis.
┌─────────────────┐
│ ORCHESTRATOR │
│ (Coordinator) │
└────────┬────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ EXOPLANET-001 │ │ VSTAR-001 │ │ FLARE-001 │
│ Transit Det. │ │ Variable Star │ │ Flare Det. │
└───────────────┘ └───────────────┘ └───────────────┘
│ │ │
└────────────────────┼────────────────────┘
│
▼
┌─────────────────┐
│ ENSEMBLE VOTE │
│ Final Decision │
└─────────────────┘
How Federation Works
- Task Routing: Orchestrator routes input to relevant models
- Parallel Inference: Multiple models process simultaneously
- Ensemble Voting: Results combined with confidence weighting
- Conflict Resolution: Disagreements resolved by specialized arbiter
EXOPLANET-001
The flagship model for detecting exoplanet transits. Identifies periodic dips in stellar brightness caused by planets passing in front of their host stars.
Input
- Light curve: 1000-5000 flux measurements
- Cadence: 2-minute to 30-minute
- Normalized to median flux = 1.0
Output
is_transit: Binary classification (true/false)confidence: Probability score (0-1)period_estimate: Rough period if detected
Use Cases
- Initial transit candidate detection
- Vetting potential false positives
- Bulk screening of target lists
VSTAR-001
Classifies variable stars into categories including eclipsing binaries, pulsators, and rotational variables. Critical for distinguishing real transits from stellar variability.
Classification Categories
| Class | Description | Period Range |
|---|---|---|
| EA | Detached eclipsing binary | 0.5 - 100 days |
| EB | Beta Lyrae type binary | 0.5 - 10 days |
| EW | W UMa contact binary | 0.2 - 1 day |
| RRAB | RR Lyrae fundamental mode | 0.3 - 1 day |
| RRC | RR Lyrae first overtone | 0.2 - 0.5 day |
| DSCT | Delta Scuti pulsator | 0.02 - 0.3 day |
| GDOR | Gamma Doradus pulsator | 0.3 - 3 days |
| CEPH | Classical Cepheid | 1 - 100 days |
| ROT | Rotational variable | 0.1 - 50 days |
| LPV | Long period variable | 50 - 1000 days |
FLARE-001
Detects stellar flares - sudden brightening events caused by magnetic reconnection on the stellar surface. Important for assessing habitability around active stars.
Output Parameters
flare_detected: Boolean flagflare_start: Start time (BJD)flare_peak: Peak brightness timeflare_energy: Estimated energy (ergs)flare_amplitude: Peak amplitude (relative flux)
ASTERO-001
Analyzes stellar oscillations to determine fundamental stellar parameters like mass, radius, and age. Essential for accurate planet characterization.
Derived Parameters
nu_max: Frequency of maximum power (microHz)delta_nu: Large frequency separation (microHz)stellar_mass: Derived mass (solar masses)stellar_radius: Derived radius (solar radii)stellar_age: Estimated age (Gyr)
SPECTYPE-001
Classifies stellar spectral types (O, B, A, F, G, K, M) from photometric colors or low-resolution spectra. Used for habitable zone calculations.
GALAXY-001
Classifies galaxy morphologies (spiral, elliptical, irregular, merger). Uses 2D image input rather than 1D light curves.
SUPERNOVA-001
Classifies supernova types from early light curve data. Enables rapid classification for follow-up observations.
MICROLENS-001
Detects gravitational microlensing events - temporary brightening caused by a massive object passing between us and a background star. Can reveal planets even around distant stars.
TRAINER-001 (ASTRA)
ASTRA (Astronomical Science Tutor and Research Assistant) is LARUN's AI-powered space science educator. Unlike other models, ASTRA uses Retrieval-Augmented Generation (RAG) to provide accurate, sourced answers about space science.
ASTRA is enthusiastic, patient, and curious. It loves sharing "did you know?" facts and uses analogies to explain complex concepts. ASTRA always cites sources and encourages further exploration.
Knowledge Sources
- NASA: TESS, Kepler, JWST mission data
- ESA: Gaia, CHEOPS, ExoMars
- ISRO: AstroSat, Chandrayaan
- JAXA: Japanese space exploration
- SpaceX: Launch and mission data
- CNSA: Chinese space program
- arXiv: Research papers
Features
- Interactive Lessons: Structured learning paths
- Quizzes: Test your knowledge
- Model Explainer: Understand why models make predictions
- Memory: Remembers your learning progress
- Hot-swap Models: Always uses latest model versions
Example Interactions
# Learning
"/learn topic exoplanets"
"/learn quiz transits"
# Questions
"What is the transit method?"
"How does TESS find planets?"
"Explain the habitable zone"
# Explanations
"/learn explain" # Why did the model predict this?
Explore the Models in Action
See how our TinyML federation works together to find exoplanets.
Try LARUN Now