TinyML Models

LARUN uses a federation of specialized TinyML models, each optimized for a specific astronomical detection or analysis task. All models are under 100KB, enabling edge deployment and browser-based inference.

9
Specialized Models
<100KB
Per Model
81.8%
Detection Accuracy
<50ms
Inference Time

Model Architecture

All LARUN models share a common architecture optimized for TinyML deployment:

┌─────────────────────────────────────────────────────────────┐
│                    INPUT LIGHT CURVE                         │
│              (normalized flux vs. time)                      │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                  PREPROCESSING LAYER                         │
│     Normalization │ Detrending │ Outlier Removal            │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│              FEATURE EXTRACTION (1D-CNN)                     │
│     Conv1D(32) → ReLU → MaxPool → Conv1D(64) → ReLU         │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                 CLASSIFICATION HEAD                          │
│        Flatten → Dense(128) → Dropout → Dense(N)            │
└─────────────────────────────────────────────────────────────┘
                            │
                            ▼
┌─────────────────────────────────────────────────────────────┐
│                      OUTPUT                                  │
│           Class probabilities or regression values           │
└─────────────────────────────────────────────────────────────┘
        

Optimization Techniques

Model Federation

LARUN models work together as a federation, sharing information and combining predictions for robust analysis.

                    ┌─────────────────┐
                    │   ORCHESTRATOR  │
                    │   (Coordinator) │
                    └────────┬────────┘
                             │
        ┌────────────────────┼────────────────────┐
        │                    │                    │
        ▼                    ▼                    ▼
┌───────────────┐   ┌───────────────┐   ┌───────────────┐
│ EXOPLANET-001 │   │   VSTAR-001   │   │  FLARE-001    │
│ Transit Det.  │   │ Variable Star │   │ Flare Det.    │
└───────────────┘   └───────────────┘   └───────────────┘
        │                    │                    │
        └────────────────────┼────────────────────┘
                             │
                             ▼
                    ┌─────────────────┐
                    │ ENSEMBLE VOTE   │
                    │ Final Decision  │
                    └─────────────────┘
        

How Federation Works

  1. Task Routing: Orchestrator routes input to relevant models
  2. Parallel Inference: Multiple models process simultaneously
  3. Ensemble Voting: Results combined with confidence weighting
  4. Conflict Resolution: Disagreements resolved by specialized arbiter

EXOPLANET-001

Transit Detection

Core Model

The flagship model for detecting exoplanet transits. Identifies periodic dips in stellar brightness caused by planets passing in front of their host stars.

Size 48 KB
Accuracy 81.8%
Inference 23 ms
Training Data 5,000+ transits

Input

  • Light curve: 1000-5000 flux measurements
  • Cadence: 2-minute to 30-minute
  • Normalized to median flux = 1.0

Output

  • is_transit: Binary classification (true/false)
  • confidence: Probability score (0-1)
  • period_estimate: Rough period if detected

Use Cases

  • Initial transit candidate detection
  • Vetting potential false positives
  • Bulk screening of target lists

VSTAR-001

Variable Star Classification

High Accuracy

Classifies variable stars into categories including eclipsing binaries, pulsators, and rotational variables. Critical for distinguishing real transits from stellar variability.

Size 68 KB
Accuracy 87.2%
Inference 31 ms
Classes 12

Classification Categories

Class Description Period Range
EA Detached eclipsing binary 0.5 - 100 days
EB Beta Lyrae type binary 0.5 - 10 days
EW W UMa contact binary 0.2 - 1 day
RRAB RR Lyrae fundamental mode 0.3 - 1 day
RRC RR Lyrae first overtone 0.2 - 0.5 day
DSCT Delta Scuti pulsator 0.02 - 0.3 day
GDOR Gamma Doradus pulsator 0.3 - 3 days
CEPH Classical Cepheid 1 - 100 days
ROT Rotational variable 0.1 - 50 days
LPV Long period variable 50 - 1000 days

FLARE-001

Stellar Flare Detection

Real-time

Detects stellar flares - sudden brightening events caused by magnetic reconnection on the stellar surface. Important for assessing habitability around active stars.

Size 42 KB
Accuracy 89.5%
Inference 18 ms
Training Data 10,000+ flares

Output Parameters

  • flare_detected: Boolean flag
  • flare_start: Start time (BJD)
  • flare_peak: Peak brightness time
  • flare_energy: Estimated energy (ergs)
  • flare_amplitude: Peak amplitude (relative flux)

ASTERO-001

Asteroseismology

Stellar Physics

Analyzes stellar oscillations to determine fundamental stellar parameters like mass, radius, and age. Essential for accurate planet characterization.

Size 72 KB
Accuracy 92.1%
Parameters nu_max, delta_nu

Derived Parameters

  • nu_max: Frequency of maximum power (microHz)
  • delta_nu: Large frequency separation (microHz)
  • stellar_mass: Derived mass (solar masses)
  • stellar_radius: Derived radius (solar radii)
  • stellar_age: Estimated age (Gyr)

SPECTYPE-001

Spectral Classification

Fast

Classifies stellar spectral types (O, B, A, F, G, K, M) from photometric colors or low-resolution spectra. Used for habitable zone calculations.

Size 38 KB
Accuracy 94.3%
Classes OBAFGKM

GALAXY-001

Galaxy Morphology

Image-based

Classifies galaxy morphologies (spiral, elliptical, irregular, merger). Uses 2D image input rather than 1D light curves.

Size 95 KB
Accuracy 88.7%
Input 64x64 image

SUPERNOVA-001

Supernova Classification

Alert System

Classifies supernova types from early light curve data. Enables rapid classification for follow-up observations.

Size 58 KB
Accuracy 85.4%
Classes Ia, II, Ibc

MICROLENS-001

Microlensing Detection

Rare Events

Detects gravitational microlensing events - temporary brightening caused by a massive object passing between us and a background star. Can reveal planets even around distant stars.

Size 52 KB
Accuracy 78.9%
Events/year ~3000

TRAINER-001 (ASTRA)

Explore the Models in Action

See how our TinyML federation works together to find exoplanets.

Try LARUN Now